Die Kristallstruktur von Stottit Fe[Ge(OH)₆]

VON H. STRUNZ UND M. GIGLIO*

Institut für Mineralogie (Kristall-, Mineral- und Gesteinskunde), Technische Universität Berlin, Berlin-Charlottenburg, Deutschland

(Eingegangen am 12 Januar 1960 und wiedereingereicht am 10 Mai 1960)

Stottite, cm.-sized pseudo-octahedral crystals from the Tsumeb Mine in SW-Africa, has the spacegroup symmetry $C_{4h}^4 - P_{4_2}/n$ with a = 7.55, c = 7.47 Å and the cell content 4 FeGe(OH)₆. The atomic arrangement, determined by two-dimensional Patterson and Fourier work, shows Fe and Ge in symmetry centres, like Na and Cl in halite, and OH groups in general positions. The coordination polyhedra are pseudo-octahedral $[Fe(OH)_6]^{4-}$ and $[Ge(OH)_6]^{2-}$ groups, forming in regular alternation a three-dimensional framework, important in understanding the complex crystal chemistry and geochemistry of germanium.

8 OH₍₁₎

Stottit, Fe[Ge(OH)₆], kristallisiert tetragonal-dipyramidal mit

$$a_0 = 7,55, c_0 = 7,47$$
 Å; $c_0/a_0 = 0,989; Z = 4;$

die Raumgruppe ist $C_{4\hbar}^4 - P4_2/n$ (Strunz, Söhnge & Geier, 1958; Strunz & Giglio, 1959). Die morphologische Entwicklung zeigt Fig. 1.

Fig. 1. Morphologische Entwicklung von Stottit: $p\{111\}, a\{100\}, c\{001\}, m\{110\}, d\{011\}, e\{012\}.$

Ein Vergleich mit den 1958/59 synthetisierten Stannaten Fe[Sn(OH)₆], Mn[Sn(OH)₆] etc. (Strunz & Contag, 1960), ferner die Bestätigung der Anwesenheit von OH-Gruppen durch eine Ultrarot-Untersuchung, dankenswerterweise von Herrn Dr. G. Gattow im Anorganisch-Chemischen Institut der Universität Göttingen ausgeführt, sowie die von Zemann (1959) ausgesprochene wahrscheinliche Isotypie mit NaSb(OH)₆ (Schrewelius, 1938), liessen das Vorliegen oktaedrischer [Ge(OH)6]²⁻-Baukomplexe vermuten. Eine volle Strukturbestimmung erschien interessant und notwendig, vor allem im Hinblick auf das kristallchemische und geochemische Verhalten des Germaniums.

Strukturbestimmung und Strukturbeschreibung

Von orientiert nachgeschliffenen Spaltplättchen senkrecht [001] und [100] wurden Precession-Aufnahmen

	Tabelle 1	. Paran	Parameter		
Atomart	Punktlage	x	y		
4 Ge	4(d)	$\frac{1}{2}$	$\frac{1}{2}$		
4 Fe	4 (c)	0	Ō		

8(g)

0.26

0.53

$8 \text{ OH}_{(2)}$	8(g)	0.54	0.26	0.595
8 OH ₍₃₎	8(g)	0.42	0.42	0.27
nach der 'mul	tiple exp	osure met	hod'herg	gestellt (Mo
Strahlung mit	Zr-Filter	r) und die	e hk0- un	d Okl-Inten
sitäten mit e	iner Gen	auigkeit	von 20-2	25% visuel
geschätzt. Die	Lorentz	-Polarisat	ionsfakte	oren wurder
graphisch erm	ittelt, die	e Absorpt	ion konr	ite vernach
lässigt werden	i, da sie	bei \overline{der}	vorlieger	nden Unter

suchungsmethode für alle Reflexe einer Zone annähernd gleich gross ist. Zur Berechnung der Struktur-

Fig. 2. Fourier-Projektion nach [001]. Die Höhenschichtlinien sind stark von 10 zu 10 e.Å⁻² gezeichnet. F_{000} theoretisch eingeführt. Der Konvergenzfaktor für die F_0 beträgt $\exp\left[-4,0\,(\sin\,\theta/\lambda)^2\right]$.

z

1

0

0.595

^{*} Heimatadresse: Facultad de Quimica, Universidad de Montevideo, Uruguay.

Tabelle 2. Vergleich zwischen F_c und F_o

hk0	Fc	Fo	hk0	Fc	Fo	h k0	Fc	Fo
020 040 060 080 0.10.0 110 130 150 170 190 220 240 260 280 2.10.0	63.7 41.0 38.6 25.6 21.0 -9.5 0.2 6.8 -1.4 1.8 61.3 41.9 27.4 24.8 24.2	55.2 43.5 36.0 23.7 (0.3 (4.5) (4.3) 53.8 43.5 26.8 26.5 21.6	$ \begin{array}{r} 310\\ 330\\ 350\\ 370\\ 390\\ 420\\ 440\\ 460\\ 480\\ 4 \cdot 10 \cdot 0\\ 510\\ 550\\ 550\\ 570\\ \end{array} $	3.8 6.6 4.8 -3.6 4.1 44.3 34.6 20.8 20.8 23.6 10.5 6.0 0.1 6.1	7.0 12.1 7.1 (4.6) (4.1) 44.2 33.6 24.5 21.2 13.3 5.7 6.9 (4.5) (4.5)	620 640 660 710 730 750 820 840 860 910 930 10.2.0 10.4.0	29.0 22.8 25.9 18.7 -1.3 2.8 5.5 26.2 30.2 19.0 -1.8 0.6 25.2 24.0	28.4 26.1 26.7 19.4 (4.3) (4.6) 29.2 27.0 19.3 (4.6) 25.4 14.8
Okl	Fc	Fo	Okl	Fc	Fo	Okl	Fc	Fo
$\begin{array}{c} 002\\ 004\\ 006\\ 008\\ 0.0.10\\ 020\\ 040\\ 060\\ 080\\ 0.10.0\\ 011\\ 012\\ 013\\ 014\\ 015\\ 016\\ 017\\ 018\\ 019\\ 0.1.10\\ 021\\ 022\\ 023\\ 024\\ 025\\ 026\\ 027\\ 028\\ \end{array}$	44.6 317.32.4 32.4 419.0 22.2 33.6 32.4 32.4 32.2 2.3 3.6 3.2 1.2 2.3 3.0 1.2 2.4 3.0 1.2 2.4 3.0 1.2 2.4 3.0 1.2 2.4 1.0 2.4 3.0 1.2 2.3 3.0 1.2 2.3 3.0 1.2 2.3 3.0 1.2 2.3 3.0 1.2 2.3 3.0 1.2 2.3 3.0 1.2 2.3 3.0 1.2 2.3 3.0 1.2 2.3 3.0 1.2 2.3 3.0 1.2 2.4 3.0 1.2 2.4 3.0 1.2 2.3 3.0 1.2 2.3 3.0 1.2 2.4 3.0 1.2 2.4 3.0 1.2 2.4 3.0 1.2 2.4 3.0 1.2 2.4 3.0 1.2 2.4 3.0 1.2 2.4 3.0 1.2 2.4 3.0 1.2 2.4 3.0 1.2 2.4 3.0 1.2 2.4 3.0 1.2 2.4 3.0 1.2 2.4 3.0 1.2 2.4 3.0 1.2 2.4 2.4 2.4 2.4 2.4 2.4 2.4 3.0 1.2 2.4 3.0 1.2 2.4 3.0 1.2 2.4 3.0 1.2 2.4 3.0 1.2 2.4 3.0 1.2 2.4 3.0 1.2 2.4 3.0 2.4 2.4 3.0 2.4 2.4 3.0 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 3.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2	$\begin{array}{c} 44.0\\ 33.6\\ 20.6\\ 31.2\\ 28.0\\ 58.5\\ 46.3\\ 30.7\\ 25.2\\ (0.9)\\ 10.0\\ (4.3)\\ (4.7)\\ (31.1)\\ (4.7$	$\begin{array}{c} 029\\ 0.2.10\\ 0.31\\ 0.32\\ 0.33\\ 0.34\\ 0.35\\ 0.36\\ 0.37\\ 0.38\\ 0.39\\ 0.41\\ 0.42\\ 0.43\\ 0.44\\ 0.45\\ 0.44\\ 0.45\\ 0.46\\ 0.47\\ 0.48\\ 0.49\\ 0.51\\ 0.52\\ 0.53\\ 0.55\\ 0.56\\ 0.57\\ 0.58\end{array}$	$\begin{array}{c} 1.0\\ 19.6\\ 7.7\\ -4.9\\ -6.9\\ 10.4\\ 7.5\\ -6.9\\ 29.6\\ 22.5\\ 23.6\\ 22.5\\ 23.6\\ 26.6\\ 30.5\\ 25.5\\ 26.6\\ 26.8\\ 30.5\\ 25.5\\ 26.6\\ 26.8\\ 30.5\\ 26.6\\ 26.8\\ 30.5\\ 26.6\\ 26.8\\ 30.5\\ 26.8\\ 26$	(4.9) 26.3 14.4 10.5 (3.6) 9.6 10.6) (4.7) (4.9) (4.7) (4.9) (4.7) (4.2) 36.1 (4.5) 27.8 (4.6) (4.1) 7.4 10.5 (4.6) (4	059 061 062 063 064 065 066 067 068 071 072 073 074 075 076 077 081 082 083 084 085 084 085 084 091 092 093 094 095 0.10.1 0.10.2	4.2 8.4 9.4 25.6 30.3 25.3 1.2 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2	(3.8) (4.6) 35.2 (4.7) 30.2 (4.8) 31.87 (4.7) (4.7) (4.7) (4.7) (4.7) (4.7) (4.7) (4.6) (4.6) (4.7) (4.6) (4.7) (4.6) (4.7) (4.6) (4.7) (4.6) (4.7) (4.6) (4.7) (4.6) (4.

amplituden wurde das Atomstreuvermögen von Fe²⁺ den Angaben von Viervoll & Øgrim (1949) entnommen, für Ge⁴⁺ und (OH)⁻ lagen die Werte von Berghuis *et al.* (1955) zugrunde, wobei das Streuvermögen von (OH)⁻ aus den Angaben für O²⁻ extrapoliert wurde.

Aus Patterson-Projektionen nach [001] und [100] waren die Schwerpunkte der Fe- und Ge-Atome leicht zu finden. Da Fe und Ge an den F-Werten aller Reflexc mit h=k=l=2n beteiligt sind, wurden Fourier-Projektionen nach [001] und [100] gerechnet, aus denen die Lage der OH-Gruppen ungefähr ermittelt werden konnte. Mit den so gefundenen vorläufigen Parameterwerten wurden weitere Fourier-Synthesen berechnet und schrittweise verfeinert. Die endgültige Fourier-Projektion parallel [001] ist in Fig. 2 dargestellt; die gefundenen Parameter sind in Tabelle 1 angegeben.

Die berechneten Strukturamplituden F_c sind den beobachteten Strukturamplituden F_o in Tabelle 2

Fig. 3. Struktur von Stottit. Projektion auf (001). Es sind die Koordinations-Polyeder um Ge und Fe dargestellt.

 $OH_{(2)}$ --Ge- $OH_{(3)}$

gegenübergestellt; für nicht beobachtete Reflexe wurden die nach Hamilton (1955) berechneten wahrscheinlichen Werte in Klammern eingesetzt. Die Berechnung des isotropen Temperaturfaktors ergab $B_{10011}=0,34$ und $B_{11001}=0,51$. $R_{10011}=0,125$ (aus insgesamt 31 Reflexen bis zu $(\sin \theta)/\lambda=0,72$ Å⁻¹), $R_{11001}=0,134$ (aus insgesamt 35 Reflexen bis zu $(\sin \theta)/\lambda=0,69$ Å⁻¹). Werden auch die nicht beobachteten Reflexe berücksichtigt, dann wird: $R'_{1001}=0,159$ (12 nicht beobachtete Reflexe), $R'_{11001}=0,218$ (50 nicht beobachtete Reflexe). Legt man der Berechnung die von Schrewelius (1938) für NaSb(OH)₆ angegebenen Parameterwerte für (OH)⁻ zugrunde, dann wird $R_{10011}=0,21$ und $R_{11001}=0,17_3$.

Die Struktur lässt sich folgendermassen beschreiben: Fe und Ge bilden — jedes für sich — ein geringfügig tetragonal deformiertes kubisch-flächenzentriertes Gitter: beide Gitter sind entsprechend dem NaCl-Typus ineinandergestellt. Ge ist von sechs (OH) in Form eines leicht verzerrten Oktaeders umgeben, mit einem mittleren Abstand Ge-(OH) von 1.96 Å; Fe bildet cbenfalls mit sechs (OH) ein pseudooktaedrisches Koordinationspolyeder, wobei der mittlere Abstand Fe-(OH) 2,14 Å beträgt. Die 'Ge(OH)₆-Oktaeder' und die 'Fe(OH)₆-Oktaeder' sind über gemeinsame Ecken miteinander verknüpft, Fig. 3. Die Flächen der morphologisch dominanten Form {111} werden strukturell von leicht gewellten (OH)-Schichten gebildet. Die gute Spaltbarkeit nach dem Prisma {100} und der Basis {001} entspricht der würfeligen Spaltbarkeit von Steinsalz.

Tabelle 3. Interatomare Abstände und Valenzwinkel

${\rm Ge(OH)}_{6}$ -Oktaeder		Fe(OH) ₆ -Okt	$Fe(OH)_{6}$ -Oktaeder		
$Ge \leftrightarrow OH_{(1)}$	1,98 Á	$Fe \leftrightarrow OH'_{(1)}$	2,10 Å		
$Ge \leftrightarrow OH_{(2)}$	1,99	Fe $\leftrightarrow OH_{(2)}^{(2)}$	2,11		
Ge \leftrightarrow OH ₍₃₎	1,92	$Fe \leftrightarrow OH_{(3)}^{(2)}$	2,19		
$OH_{(1)} \leftrightarrow OH'_{(2)}$	2,70	$OH'_{(1)} \leftrightarrow OH'_{(2)}$	2,85		
$OH_{(1)} \leftrightarrow OH_{(3)}$	2,85	$OH_{(1)}^{\prime} \leftrightarrow OH_{(3)}^{\prime}$	3,19		
$OH_{(2)} \leftrightarrow OH_{(3)}$	2,88	$OH_{(2)} \leftrightarrow OH_{(3)}$	3,22		
Winkel um (le	Winkel um	\mathbf{Fe}		
$OH_{(1)}$ -Ge- $OH'_{(2)}$	86°	$OH'_{(1)}$ -Fe- $OH'_{(2)}$	$85 \cdot 4^{\circ}$		
$OH_{(1)}^{}Ge-OH_{(3)}^{(2)}$	85,2	$OH_{(1)}^{\prime \prime}$ Fe- $OH_{(3)}^{\prime \prime}$	83,2		

In Tabelle 3 sind die Valenzwinkel und die interatomaren Abstände Ge-OH und Fe-OH wiedergegeben, letztere sind um rund 6% grösser als die aus den Radien theoretisch berechneten Abstände Ge-O und Fe-O. Dies war wegen der geringeren Polarisierbarkeit der (OH)⁻-Gruppen zu erwarten.

84,4

 $OH_{(2)}$ Fe- $OH_{(3)}$

82

Substanz	Raumgruppe	a_0	c_0	Isotyp mit	Autoren
Na_2GeF_6	$D_{3d}^3 - P\overline{3}1m$	8,99	5,12	Na ₂ SiF ₆	(Cipriani, 1954, 1955)
1-K2GeF6	$D_{3d}^3 P\overline{3}1m$	5,62	4,65		(Hoard & Vincent, 1939)
$\chi (\mathrm{NH}_4)_2 \mathrm{GeF}_6$	$D_{3d}^{3} - P\bar{3}1m$	5,85	4,775		(Hoard & Vincent, 1939,
•••	54		}	Isotyp	vgl. Vainshtein &
					Kurdyumova, 1958)
α -Rb ₂ GeF ₆	$D_{3d}^3 - P\overline{3}1m$	5,82	4,79)		(Vincent & Hoard, 1942)
	TT 1	5,71	9,27		(Bode & Brockmann, 1952)
β -K ₂ GeF ₆	Hexagonal	5,77	9,38	β -K ₂ SiF ₆	(Cipriani, 1954)
β -Rb ₂ GeF ₆	Hexagonal	5,94	9,63		(Bode & Brockmann, 1952)
Cs ₂ GeF ₆	$O_b^5 - Fm3m$	8,99)		(Wyckoff & Müller, 1927)
Cs ₂ GeCl ₆	$O_b^5 - Fm3m$	10,23	}	K_2PtCl_6	(Laubengayer, Billings
- "	<i>,.</i>		j		& Newkirk, 1940)
BaGeF ₆	$D_{3d}^5 - R\overline{3}m$	4,84	$\chi = 98^\circ 01'$	BaSiF ₆	(Hoard & Vincent, 1940)
GeO ₂	$D_{4h}^{14} - P4_2/mnm$	4,39	2,85	SnO_2	(Goldschmidt, 1932; Baur, 1956)
La ₂ MgGe() ₆		3,90		CaTiO ₃	(Roy, 1954)
	- -			(NaSb(OH) ₆	(Zemann, 1959)
FeGe(OH) ₆	$C_{4h^{-}}^{*} P_{42}^{-}/n$	7,55	7,47	FeSn(OH) ₆	(Strunz & Contag, 1960)

Tabelle 4. Hexagermanate

Zur Kristallchemie und Geochemie des Germaniums

Vom GeO₂ gibt es zwei Modifikationen: eine mit Quarzstruktur und Tetraedern [GeO₄] (Zachariasen, 1928) und eine mit Cassiteritstruktur und Oktaedern [GeO₆] (Goldschmidt, 1932). Diese Doppelrolle des Germaniums wiederholt sich bei den Germanaten, so dass wir Tetragermanate, entsprechend den Silikaten (Strunz, 1960) und Hexagermanate zu unterscheiden haben: die letzteren sind in Tabelle 4 zusammengefasst. Darüber hinaus sind auch Strukturen bekannt geworden, die GeO₄- und GeO₆-Baugruppen nebeneinander enthalten (Nowotny & Wittmann, 1954).

Die enge Verwandtschaft des Ge⁴⁺ zu Si⁴⁺ macht verständlich, dass in den Silikaten der Erdkruste fast das gesamte Ge (4 g./t. in den magmatischen Gesteinen) diadoch an die Stelle von Silizium tritt und somit in tetraedrischer Koordination geochemisch getarnt ist. Die Struktur von Stottit lässt andererseits die Schlussfolgerung zu, dass ein Teil des Ge⁴⁺ auch in oktaedrischer Sauerstoff-Koordination, etwa an Stelle von Sn im SnO₂ u. a., diadoch aufgenommen werden kann.

Zum Abschluss danken wir Herrn Kollegen J. Zemann in Göttingen für einige interessante Besprechungen herzlich. Einer von uns (M. G.) dankt der Fakultät für Chemie der Universität Montevideo, Uruguay, für die Gewährung eines längeren Studienurlaubs.

- Literatur BAUR, W. H. (1956). Acta Cryst. 9, 515.
- BERGHUIS, J., HAANAPPEL, IJ. M. & POTTERS, M. (1955). Acta Cryst. 8, 478.
- BODE, H. & BROCKMANN, R. (1952). Z. anorg. Chemie, 269, 173.
- CIPRIANI, C. (1954). Rend. Soc. Min. Italiana. X, 1.
- CIPRIANI, C. (1955). Rend. Soc. Italiana. XI, 1.
- GOLDSCHMIDT, V. M. (1932). Z. phys. Chem. 17, 172.
- HAMILTON, W. C. (1955). Acta Cryst. 8, 185.
- HOARD, J. L. & VINCENT, W. B. (1939). J. Amer. Chem. Soc. 61, 2849.
- HOARD, J. L. & VINCENT, W. B. (1940). J. Amer. Chem. Soc. 62, 3126.
- LAUBENGAYER, A. W., BILLINGS, O. B. & NEWKIRK, A.E. (1940). J. Amer. Chem. Soc. 62, 546.
- NOWOTNY, H. & WITTMANN, A. (1954). Monatsh. Chem. 85, 558.
- Roy, R. (1954). J. Amer. Ceram. Soc. 37, 583.
- SCHREWELIUS, N. (1938). Z. anorg. Chem. 238, 241.
- STRUNZ, H., SÖHNGE, G. & GEIER, B. H. (1958). N. Jahrb. Min. Mh. p. 85.
- STRUNZ, H. & GIGLIO, M. (1959). Naturwiss. 46, 489.
- STRUNZ, H. (1960). Naturwiss. 47, 154.
- STRUNZ, H. & CONTAG, B. (1960). Acta Cryst. 13, 601.
- VAINSHTEIN, B. K. & KURDYUMOVA, R. N. (1958). Kristallografiya, 3, 29.
- VIERVOLL, H. & ØGRIM, O. (1949). Acta Cryst. 2, 277.
- VINCENT, W. B. & HOARD, J. L. (1942). J. Amer. Chem. Soc. 64, 1233.
- WYCKOFF, R. W. G. & MÜLLER, J. H. (1927). Amer. J. Science, 13, 347.
- ZACHARIASEN, W. (1928). Z. Kristallogr. 67, 226.
- ZEMANN, J. (1959). N. Jahrb. Min. Mh. p. 67.